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1 MOTIVATION FOR RUNII
BEAM-BEAM STUDIES.

In the first stage of Run II, the Tevatron will be operated
with 36 bunches in each beam with bunch separations of
396 nanoseconds. The expected peak luminosity is L =
8.6 × 1031 cm−2sec−1 with an average number of 2.3 in-
teractions per bunch crossing. In the second stage of Run
II, the goal is to increase the luminosity to about 1.5×1032

cm−2sec−1. If the bunch spacing were kept constant, the
average number of interactions per bunch crossing would
increase to about 4. This is thought to be unacceptably large
and might saturate the efficiency of the detectors. This is
the main reason for decreasing the bunch spacing at higher
luminosities.

One possibility is to reduce the bunch spacing to 132
nanoseconds which lowers the average number of interac-
tions to an acceptable value of 1.4. This shorter bunch spac-
ing though has several consequences on beam dynamics.
Collisions between bunches will now occur every 19.78m.
This is shorter than the distance of the nearest separators
from the main IPs at B0 and D0. Consequently the beams
will not be separated at the parasitic collisions nearest to the
IPs if the geometry of the orbit is left unchanged. A sketch
of this orbit is seen in the top part of Figure 1. This will lead
to unacceptably large beam losses and background. Mov-
ing the separators closer to the detectors does not separate
the beams sufficiently at the locations PC1L and PC1R. The
phase advance from the first available position for the sepa-
rators to these points is too small for the separator strengths
that are available [1].

One way to increase the transverse separation between
the beams is to make the beams cross at an angle at the
IPs. The optimum crossing angle depends upon a num-
ber of issues and requires a detailed investigation. The is-
sues include a reduction in the luminosity, change in the
beam-beam tune spreads, excitation of synchro-betatron
resonances, orbit offset in IR quadrupoles which increases
the nonlinear fields seen by the beams, required separation
between the beams at the nearest parasitic collisions, the
dispersion wave generated by the orbit offset, increase in
the strength of the coupling etc. A crossing angle of ∼
±200µrad in the 45 degree plane separates the beams by
∼ 4σ at the first parasitic collision. A sketch of the orbits
with a crossing angle is shown in the bottom part of Figure
1.

The crossing angles that are thought to be necessary have
a major impact on the luminosity. If L0 is the nominal lu-
minosity without a crossing angle, then the luminosity with
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Figure 1: Sketch of the locations of the main beam-beam
collisions and the next two parasitic collisions, e.g. PC1R,
PR2R on the right, with respect to the triplet quadrupoles
and the separators. The top figure shows the geometry with-
out a crossing angle, the bottom figure shows the geometry
with a crossing angle.

a total crossing angle of 2φ is

L =
1√

1 + (σsφ/σ⊥)2
L0 ≡ RL0 (1)

where σ⊥ is the transverse beam size at the IP. Figure 2
shows the relative loss in luminosity as the crossing an-
gle is increased. For example at a half crossing angle
of 200µradians, the luminosity is only 38% of its value
without a crossing angle. The smaller overlap between
the beams which lowers the luminosity also decreases tbe
beam-beam tune shift. If one assumes that we can replace
the beam size σ⊥ at the IP by σ⊥

√
1 + (σsφ/σ⊥)2 then the

head-on tune shift parameter is reduced from its value ξ0 at
zero crossing angle to ξ = R2ξ0. Figure 2 shows that with
this assumption, the relative tune shift at a half crossing an-
gle of 200µradians is about 28% of its value at zero crossing
angle. This hand-waving estimate of the beam-beam tune
shift with a crossing angle is useful only as a rough guide.
The beam-beam tune shift with a crossing angle depends on
the synchrotron oscillation amplitude so it is not enough to
specify only the transverse amplitudes when computing the
tune shift. However it is true that at any betatron amplitude,
the tune shift at all synchrotron amplitudes except zero is
smaller than the tune shift without a crossing angle.
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Figure 2: The relative decrease in luminosity and the head-
on tune shift parameter as a function of the half crossing an-
gle in the 45◦ plane.

Once the crossing angles are introduced with more than
one hundred bunches in each beam, several beam dynamics
issues become imnportant. Some of them are listed here:

• Single beam issues

Dynamic and physical aperture resulting after off-axis
excursion in IR quads. At the first parasitic interac-
tion which occurs within the quadrupole Q2, the beam
size is about 2mm. Assuming that a minimum of 4σ
separation is necessary, they will be apart by about
8mm. Coupled with the large beam size, this orbit rel-
atively far from the quadrupole axis will make both
beams more sensitive to the nonlinear fields of the
triplet quadrupoles. In addition, orbit perturbations
could lead to larger beam loss due to the tighter phys-
ical aperture in these quadrupoles.

• Beam-beam issues

– Long range interactions at collision. The long-
range interactions distort the tune footprint sig-
nificantly. For example, the zero amplitude tune
shift can lie within the interior of the footprint
and there can be folds within the footprint. In
such cases the tuneshifts at large amplitudes may
be greater than at smaller amplitudes. The im-
pact of these folds on the stability needs to be
investigated. From studies on the SSC and the
LHC [2], it is known that the amplitude in phase
space where diffusive motion begins is smaller
than the separation between the beams if all the
long-range kicks occur at the same phase. This
diffusive amplitude rdiff can be expressed as

rdiff = rsep −∆ (2)

where rsep is the average separation between the
beams and ∆ ∝

√
NPCNp where NPC is the

number of parasitic collisions and Np is the in-
tensity of the strong bunch. In the Tevatron the
long-range kicks occur at different phases so this
expression may not be directly applicable. Nev-
ertheless if there are enough such interactions
where the tails of the beams overlap, diffusive
motion and eventually particle loss may start at
amplitudes less than the average separation.

– Crossing angle induced synchro-betatron reso-
nances. The strength of these resonances is of-
ten characterized by the Piwinski parameter χ =
σsφ/σ⊥. The typical requirement is that this pa-
rameter should be much less than one for these
resonances to have negligible effect. This would
favour shortening the bunch length. However
resonance strengths cannot increase monotoni-
cally with χ because at large crossing angles the
overlap between the beams decreases and the
strength of the beam-beam force and the reso-
nances decrease. Nevertheless, a detailed study
of these resonances and how they combine with
the long-range interactions to affect growth of
particle amplitudes needs to be done.

– Bunch to bunch variations in orbit. A separator
scheme to ensure that collisions of most bunches
are well centered will be essential. Dipole kicks
due to the long-range beam-beam collisions will
also produce significant variations in orbits from
bunch to bunch.

– PACMAN bunches. Bunches which are the fur-
thest away from the center of a train might be in a
different tune region and therefore more suscep-
tible to losses.

– Long-range interactions at injection and during
the ramp. As the beams are ramped to top energy,
the separation helix changes and the separation
is very small at some locations. This could be a
problem when there are nearly two hundred in-
teractions. However, the beams are larger during
the ramp so beam-beam kicks are smaller.

Figure 3 shows the sequence of collisions for different
bunches in a train. The head of the train will meet the head
of the opposing train at the IP and all subsequent long-range
encounters with the other train will be downstream of the IP.
A bunch in the center of the train will experience half of its
long-range encounters upstream of the IP and the remain-
ing encounters downstream of the IP. The last bunch in the
train will have all long-range encounters upstream of the IP.
Figure 4 shows the anti-symmetric optics around the IP. As
a consequence of the anti-symmetry, there is no reflection
symmetry about the center of the train and the strength of
the beam-beam kicks is different for each bunch. In Run IIa
where there will be three trains of 12 bunches each, there
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Figure 3: Schematic of the collision scheme for different
bunches in a train.

Figure 4: Plot of the beta functions around the IP showing
that the optics is anti-symmetric around the IP.

is a three-fold symmetry so there are twelve equivalence
classes of beam-beam kicks. In Run IIb with 140×105,
there will possibly be one train of proton bunches meeting
two trains of anti-proton bunches. This is required so that
every anti-proton bunch meets a proton bunch at B0 and
D0. There is no symmetry in this scenario so there will be
105 different equivalence classes of beam-beam kicks for
the anti-proton beam. Table 1 shows a set of basic parame-
ters for Run IIb. These values are subject to change.

Some of the questions which a study of the beam-beam
interactions must answer include:
• Do the beam-beam interactions with crossing angles ex-
cite significant synchro-betatron resonances?
• Which of the long-range interactions have an important
influence on the beam?
•What is the optimum crossing angle?
• Which of the following effects have an important influ-
ence on the beam?
Static: Transverse coupling, bunch to bunch intensity vari-
ations, unequal emittances, phase advance errors from IP to

Run IIb
Luminosity 14.0×1031

Number of bunches (p× p̄) ∼ 140× 105
Interactions/crossing 1.3
Np per bunch 2.7×1011

Np̄ per bunch 3×1010

Total p̄’s 3.15 ×1012

Bunch separation [nsec] 132
Emittances (p/p̄) 20/15
σ∗ (p/p̄) [µm] 33/29
σs (p/p̄) [cm] 37/37
Half crossing angle φ [µrad] ∼ 200
Beam-beam tune shift - 2IPs (p/p̄) (0.77/6.0)×10−3

Transverse tunes 20.581/20.575
Synchrotron tune 7.2×10−4

Piwinski parameter (σs/σ∗)φ [µrad] 2.1/2.5
No. of long-range interactions 208

Table 1: Basic parameters for Run IIb with a 132 nanosec-
ond bunch spacing. Some of these parameters such as the
number of bunches and crossing angle represent best esti-
mates at present.

IP, chromatic variation in β∗, ...
Time dependent: Tune modulations and/or fluctuations,
beam offset modulations and/or fluctuations .
•What measures are useful in improving the lifetime? e.g.
resonance compensation, reduction of tune shift with am-
plitude, beam-beam compensation,...

2 BEAM-BEAM INTERACTIONS WITH
A CROSSING ANGLE

The impact of all the beam-beam interactions with Run IIb
parameters requires a detailed study before we will know
if the beams are sufficiently stable. As a start we have be-
gun investigations of the effect of the synchro-betatron res-
onances excited by the crossing angle at the main IPs. In
this section I will report on our simulation studies with a
crossing angle.

Figure 5 shows the simulation model for treating the
beam-beam interactions at a crossing angle. This model
has the following features:
• 6D interactions at B0 and D0. This includes the change
in energy from the beam-beam interaction.
• Strong beam bunch (protons) is sliced into 9 disks to
account for the crossing angle. The transverse distance
of the anti-proton from the center of each disk is used
to calculate the beam-beam kick from that disk and then
the kicks are summed over all disks. All of these kicks
are delivered at the same instant so the anti-proton is not
propagated from disk to disk.
• Transverse size of the disks increases away from the IP.
This takes into account the hourglass effect.
• Equal crossing angles in both planes - the crossing plane
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Figure 5: Simulation model for beam-beam interactions

is at 45◦ to the horizontal plane.
• 6D Linear transport through interaction region and arcs.
• Phase advance between B0 and D0 is taken from a recent
lattice model of the Tevatron [3].
• Particles are tracked for 1 million turns (∼21 seconds).

Tune footprints at various crossing angles have been cal-
culated with this model. Figure 6 shows the footprints
at zero crossing angle and a total crossing angle of 400µ
radians or 283µ radians each in the horizontal and verti-
cal planes. Also shown are the sum and difference reso-
nances up to twelfth order. At the desired tunes, the beam
straddles the sum twelfth order resonances with fifth and
seventh order sum resonances outside the beam distribu-
tion. As mentioned earlier, the tune footprint at the cross-
ing angle of 400µradians is considerably smaller than with-
out a crossing angle because of the smaller overlap be-
tween the beams. Without a crossing angle, only reso-
nances of the form 2mxνx + 2myνy = n can be excited
(mx, my = 0,±1,±2, . . .) while a crossing angle will ex-
cite resonances of the formmxνx+myνs+msνs = n. We
observe that at zero crossing angle, all the twelfth order res-
onances with even coefficients cross the beam distribution
starting at amplitudes around 2.5σ. All the nearby differ-
ence resonances have at least one odd coefficient so they are
not excited by the beam-beam interactions. The tune foot-
print with the crossing angle shrinks sufficiently so that the
sum resonances 2νx + 10νy, νx + 11νy, 12νy do not cross
the distribution but all other sum twelfth order resonances
are excited and are “seen” by the beam at amplitudes greater
than about 3σ. None of the difference resonances are seen
by the beam when the crossing angle is 400µradians.

While the footprints are useful in determining the reso-
nances that may cause amplitude growth, long term track-
ing is essential in order to determine their impact on the
beam. Figure 7 shows the results obtained after tracking
a beam distribution with and without a crossing angle. At
each angle, the initial distributionwas composed of two sets
of particles: a uniform distribution of 1000 particles be-
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Figure 6: Beam-beam tune footprints with only the interac-
tions at the main IPs. In the top figure, the footprints with-
out a crossing angle and with a total crossing angle of 400
µradians in the 45 degree plane are shown superposed on all
the nearby sum resonances up to twelfth order. The bottom
figure shows these footprints superposed on the difference
resonances up to 12th order.

tween 0 and 4 σ and another uniform distribution of 1000
particles between 4 and 10 σ. Particles within the core are
well represented and this choice of distributionalso enables
us to determine amplitude growth in the tails with a sig-
nificant number of particles which would not be the case
with a Gaussian distribution. During the tracking the max-
imum and minimum amplitude reached by each particle is
recorded and the ratio of these limits is taken as the maxi-
mum swing of the particle. Figure 7 shows the maximum
swing for each particle in the distributionfirst at zero cross-
ing angle and then at 400µ radians. At zero crossing an-
gle, the swings are in an absolute sense quite small but are
relatively large between 5 and 6 σ - the region crossed by
the 12νx and 10νx+2νy resonances. These resonances are
also the twelfth order resonances with the largest widths.
Tracking shows that the amplitude swings are large where
the resonance widths are large, as they should be. Overall
at zero crossing angle, the amplitude swings of all particles
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Figure 7: The maximum relative amplitude reached over a
million turns as a function of the initial amplitude. Each
line represents a particle. The top figure shows the ampli-
tudes without a crossing angle and the bottom figure shows
results with a crossing angle of 400µradians. The ampli-
tude swings are relatively large in the region crossed by the
twelfth order resonances and their synchrotron sidebands.
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Figure 8: Top: Maximum amplitude reached by any parti-
cle within 0 to 4σ averaged over three initial distributions
as a function of the crossing angle. The error bars represent
rms deviations over the three distributions, each of which
had a uniform distribution of 1000 particles between 0 and
4σ. Bottom: The maximum change in the average ampli-
tude of the distribution, also averaged over the three initial
distributions.

in the distributionare small enough that there is no increase
in the size of the distribution. All particles stay well within
the physical aperture (∼ 18σ). The crossing angle gener-
ates new betatron resonances and synchrotron sidebands of
these resonances leading to a more intricate web of reso-
nances. The bottom part of Figure 7 shows that now there
is a greater amplitude swing from ∼ 3.5σ all the way out
to 10σ. This region has many more resonances than before.
The core however (amplitudes less than 3σ) is relatively un-
affected because no resonances cross this region, as seen
in Figure 6. Overall even though the amplitude swings are
larger in the tails, they are still not large enough for any of
the particles in the distribution to reach the physical aper-
ture.

The amplitude growth observed in the simulations is
likely to depend on the initial distribution, especially when
there are many more resonances in phase space. Figure 8



shows the results of the amplitude growth observed with
three initial distributions, each with a uniform distribu-
tion of 1000 particles between 0 and 4 σ. The top figure
shows the maximum amplitude reached by any particle in
the distribution as a function of the crossing angle. At zero
crossing angle, there is no growth in the distribution and
the rms deviation over the distributions is also negligible.
As the crossing angle increases, the average of the maxi-
mum amplitude reached increases until a crossing angle of
300µradians before decreasing at 400µ radians. The rms
deviations also increase and at 400µ radians, the fluctua-
tions are the largest. This is to be expected since the net-
work of resonances in phase space has a more complicated
structure as the crossing angle is increased in this range so
some particle distributions may experience the effects of
these resonances more than others. Taking into account the
error bars, the difference in amplitude growth between 200,
300 and 400 µradians is not statistically significant. The
bottom figure shows the maximum change in the sum am-
plitude averaged over the beam distribution as a function of
the crossing angle. The changes are less than 1% in most
cases with larger fluctuations between distributions as the
crossing angle is increased. The growth of this averaged
amplitude with time is not monotonic for any distribution
but has more of a “diffusive” nature. The differences in the
averaged amplitude between 200, 300 and 400 µradians are
also not statistically significant.

Synchro-betatron resonances excited by the crossing an-
gle create synchrotron sidebands around the betatron reso-
nances. Modulation of the betatron tune also creates side-
bands around the betatron resonances at the modulation fre-
quency. A natural source of tune modulation occurs when
the chromaticity is non-zero (expected to be set to +5 units
in Run II to combat head-tail instabilities). Off momentum
particles undergoing synchrotron oscillations experience a
betatron tune modulation at the synchrotron tune. Parti-
cles with the rms energy deviation σE/E ' 1 × 10−4 for
example will experience tune modulation at 35Hz with an
amplitude 5 × 10−4. Power supply ripple in quadrupoles
causes tune modulation over a whole spectrum of frequen-
cies and with different amplitudes. Since tune modulation
will be present, it is useful to compare the relative effects of
synchro-betatron resonances excited by the crossing angle
and those excited by tune modulation.

Figure 9 shows the maximum amplitude beating with an
initial distributionbetween 0 and 4σ, without a crossing an-
gle and with a crossing angle of 400µradians. The tune
modulation increases the amplitude beating range signifi-
cantly, especially for particles at amplitudes beyond 3.5σ.
In this region particles can reach amplitudes nearly three
times their initial amplitude. Tune modulation completely
dominates the effects due to the crossing angle - the ampli-
tude beating at 400µrad is only slightly different from the
case without a crossing angle.

Figure 10 shows the maximum amplitude reached and
the maximum change in the averaged amplitude for two
tune modulation amplitudes - 5× 10−4 and 10−3 - and av-
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Figure 9: Same as Figure 7 except for two differences. The
initial distribution has particles uniformly distributed be-
tween 0 and 4 σ and there is tune modulation at an ampli-
tude of 0.001 and frequency 35Hz. Even without a crossing
angle, there is much larger amplitude beating for particles
at amplitudes beyond 3.5σ compared to the case without
tune modulation. The amplitude beating is slightly smaller
at 400µradians.

eraged over three initial distributions. The maximum am-
plitude reached is the largest at zero crossing angle and
then decreases as the crossing angle is increased. This is
easily understood - increasing the crossing angle decreases
the overlap of the beams, and hence the beam-beam force,
so the nonlinear effects of the beam-beam force and tune
modulation are reduced. There is a competition between
the resonances excited by the crossing angle and those ex-
cited by the tune modulation but at the typical modulation
amplitudes considered here, the latter appear to be domi-
nant. The maximum change in the averaged amplitude has
a somewhat different behaviour with crossing angle. With
the lower modulationamplitude, the change is relatively flat
from 100 to 300µradians while at the larger modulation, the
change peaks at 200µradians and falls off steeply on either
side. Overall, the growth in the averaged amplitude with
tune modulation is significantly greater than without.
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Figure 10: Same as Figure 8 but with added tune modula-
tion at 35Hz and two different amplitudes 5 × 10−4 and
10−3. The amplitude growth with tune modulation is sig-
nificantly larger than without modulation.

In the simulations done to date, only the main beam-
beam interactions have been considered. The long-range
interactions, specially the ones nearest to the IPs, will have
a significant effect on the particles as will the nonlinearities
in the IR quadrupoles. The nearest neighbour long-range
interactions will favour larger crossing angles while the
magnetic nonlinearities of the IR quadrupoles will favour
smaller angles. These effects must be considered before the
range of the optimum crossing angle is known.

There is another feature of the main beam-beam interac-
tions which has not been considered until now. The bunches
at the Tevatron are long and are comparable in size to the
beta function at the IP. This introduces new effects consid-
ered in the next section.

3 ANALYTICAL STUDIES OF BUNCH
LENGTH EFFECTS

It was pointed out nearly ten years ago by Krishnagopal and
Siemann [4] that the phase advance experienced by a parti-
cle as it propagates through the opposing bunch can have a
strong effect on the strength of the beam-beam interactions.
They considered a simplified version of the problem assum-
ing (i) that the beta function stays constant over the interac-
tion length and (ii) one transverse degree of freedom and the
longitudinal. Under these assumptions they found that the
beam-beam harmonics are of the form

Vmxms = Tmx(Jx)Jms (
mx

2
asσs
β∗

)exp[−1
2

(
mxσs
2β∗

)2]

(3)
where the tunes are close to the resonance mxνx+msνs =
n. The main point to emphasize here is the exponential de-
cay of the resonance strengths with the square of the bunch
length. This rapid fall-off in strength is primarily due to the
assumption that the beta function stays constant and there-
fore the phase advances linearly over the interaction length.

This problem has recently been studied [5] without the
major assumptions made in the earlier study. The results
show that instead of a monotonic decay with bunch length,
the resonance strengths oscillate as a function of the bunch
length. Here I present a summary of these results. I will as-
sume that the beams are round over the interaction length,
an assumption that is true at the Tevatron and in most
hadron colliders.

For infinitely short bunches the Hamiltonian is

H(Jx, φx, Jy, φy) =
νx
R
Jx +

νy
R
Jy +Hs +

1
R
U(Jx, φx, Jy, φy)δP (θ) (4)

(Jx, νx), (Jy, νy) are the linear actions and tunes in the hor-
izontal and vertical planes respectively, R is the radius of
the ring. Here we have assumed that the lattice is com-
pletely linear. Hs is the Hamiltonian describing the non-
linear longitudinal motion. U is the beam-beam potential,
δP (θ) is the periodic delta function with period 2π/NIP



when there are NIP equally distant interaction points in the
ring.

The beam-beam potential has the Fourier expansion

U =
Nprp
γp

∞∑
mx=0

∞∑
my=0

U2mx,2my(Jx, Jy)

× cos 2mxφx cos 2myφy (5)

The Fourier coefficients U2mx,2my for a potential due to
a Gaussian distribution can be found in a straightforward
fashion. This coefficient will be the dominant harmonic in
the Fourier expansion if the tunes nearly satisfy the reso-
nance condition

2mxνx + 2myνy = n (6)

If the bare tunes (νx0, νy0) are close enough to this reso-
nance condition, then due to the tune shift with amplitude
the resonance condition may be exactly satisfied at an am-
plitude called the resonant amplitude. The equation for the
resonant amplitude can be written as

R(ax, ay) ≡ δ + ∆νx(ax, ay) +
my

mx
∆νy(ax, ay) = 0

δ = νx0 +
my

mx
νy0 −

n

2mx
(7)

Here ∆νx,∆νy are the tune shifts with amplitude. For a
Gaussian distributionof charge, the resonant amplitudes lie
on a one-parameter (r) family of curves determined by the
equation

R(ax, rax) = δ +NIP ξ

∫ 1

0

du

u
exp[−(1 + r2)a2

xu

4
]{

[I0(
a2
xu

4
)− I1(

a2
xu

4
)]I0(r2 a

2
xu

4
)

+
my

mx
[I0(r2a

2
xu

4
)− I1(r2a

2
xu

4
)]I0(

a2
xu

4
)
}

= 0

(8)

where ay = rax. These resonant amplitudes (ax, ay) can
be found by numerical integration and are very close to
the locus of stable fixed points corresponding to these res-
onances. The resonance islands are centered on the stable
fixed points.

When the bunches are of finite length, the beam-beam
potential seen by a particle is

V (x, y, s) = ρl(s+ct)U(x, y) ≡
∑
~m,n

V~m,n exp[i(~m·~ψ−nθ)]

(9)
ρl is the longitudinal density of the bunch whose center is
a distance of s+ ct from the particle. Remarkably enough,
the Fourier harmonics of the potential for round beams fac-
torize into a product of two terms

V2mx,2my,ms,n =
Nbrp
γp

U2mx,2my(Jx, Jy)L2mx,2my,ms,n(as)

(10)

whereU2mx,2my depends only on the transverse actions and
is independent of the longitudinal variables. The depen-
dence on the bunch length σs and the synchrotron oscilla-
tion amplitude of the particle as is all contained inL~m. As-
suming that the longitudinal density distribution of the op-
posing bunch is Gaussian and that the tunes are sufficiently
close to a resonance so that

∆ = 2mxνx + 2myνy +msνs − n� 1 (11)

the longitudinal harmonic is of the form

L~m=
1

(2π)3/2
exp[−a

2
s

4
]
∞∑

j=−∞
(−1)jIj(

a2
s

4
)Fj (12)

Fj =
∫ ∞

0

du e−2u2
cos[2m+tan−1(

σsu

β∗
)]I2j(2asu) (13)

where m+ = mx + my . The complicated argument of
the cosine in Equation (13) is a consequence of the growth
of the beta function as β(s) = β∗ + s2/β∗ where s is
the distance from the IP. The transverse harmonics U de-
crease with increasing mx, my as is well known but for
finite bunch lengths there is another multiplicative factor
L~m which also decreases as m+ increases. These expres-
sions can be analytically evaluated to extract the depen-
dence on the bunch length σs, synchrotron oscillation am-
plitude as of the particle and the resonance harmonic num-
bersmx, my. The most useful result is obtained in the limit
of high resonance numbers - this is usually the case at most
accelerators where tunes are chosen to avoid resonances of
order lower than or equal to ten. An asymptotic expansion
in the limit that m+ →∞ shows that

lim
m+→∞

L~m =
1

2(2π)3/2

1√
m+λ

cos[2m+arctan(λ)]

+O(
1
m+

) , λ =
asσs
2β∗

(14)

This predicts a damped oscillatory dependence on the
bunch length. We may define a quasi-wavelength of these
oscillations as (π/m+)(λ/arctan(λ)) which in the limit
λ � 1 is π/m+ while in the opposite limit λ � 1
is 2λ/m+. Figure 11 shows the behaviour of L~m in the
asymptotic limit for m+ = 8, 9, 10 as a function of λ. At
small λ the quasi-periods of the oscillations are short while
at large λ, L~m approaches zero asymptotically. Thus at
short bunchlengths, observables such as beam lifetime (due
to the beam-beam interactions) are likely to change quickly
with bunchlength while at long bunchlengths the lifetime
may be somewhat insensitive to the choice of bunch length.
This oscillatory behaviour is in contrast to the exponential
decay predicted by the earlier analysis [4].

One measure of the influence of the bunch length can be
seen in the resonance widths. Assuming, as is usual, that the
resonances are isolated the half widths in action are given
by the expressions

(∆Jx,w,∆Jy,w) = (mx, my) ×
(
|N |
|D|

)1/2
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Figure 11: Asymptotic behaviour of the longitudinal part
of the beam-beam harmonics, L~m for large m+ at m+ =
8, 9, 10 as a function of λ = asσs/(2β∗).

N = 2Umx,my(I1,s, I2)L~m (15)

D = L0[m2
x

∂2

∂J2
x

+ 2mxmy
∂2

∂JxJy
+m2

y

∂2

∂J2
y

]U0,0

Figure 12 shows the resonant amplitudes and the widths of
the islands of the twelfth order sum resonances. It is nec-
essary for the neighbouring islands to touch or intersect in
action space in order for the islands to overlap but it does
not prove that they do in fact overlap in phase space. Over-
lapping in action space is therefore a necessary but not suffi-
cient condition for resonance overlap. We observe that for
zero length bunches it is possible for the 10νx + 2νy and
8νx + 4νy resonances to overlap but not for the other sum
resonances. The bottom figure shows the resonance widths
now calculated for Tevatron bunch lengths and as = 1.
These widths are smaller by an order of magnitude - hence
none of these resonances can overlap as is clear from this
figure. This is consistent with observations at the Tevatron
- in past operations when the working point was chosen to
straddle these twelfth order resonances, there was no signif-
icant effect on the lifetime. This calculation makes it clear
that bunch length effects have a major impact on the beam-
beam resonance strengths.

The analytical predictions can be tested by particle track-
ing. The model to incorporate bunch length effects de-
scribed here is similar to that in Section 2 but with two ad-
ditional features. The longitudinal density of each disk falls
off as a Gaussian from the center of the bunch and the parti-
cle is propagated from the center of each disk to the next by
the appropriate transfer matrix. Tracking was done for dif-
ferent bunch lengths, first with all 1000 particles in the dis-
tribution at the same initial synchrotron amplitude as = 1
and then with a Gaussian distribution in as with a cutoff at
as = 3. These simulations were done at three different
tunes: the Tevatron tunes νx = 0.581, νy = 0.575, close
to a fourth integer resonance νx = 0.257, νy = 0.251,
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Figure 12: The top figure shows the locations of resonant
amplitudes and the widths of sum twelfth order resonances
calculated for infinitesimally short bunches, β∗=0.35m as a
functionof r = ay/(ax+ay). Qx, Qy denote the horizontal
and vertical tunes respectively. The curves in red show the
locations of the resonant amplitude while the curves in blue
and green on either side show the width of the resonance.
We see that there is the possibility of overlap between the
10Qx+2Qy and 8Qx+4Qy resonances for∼ 0.15 < r <
0.3. At the bottom we show the same resonances and widths
calculated with a bunch length of 36cm and as = 1.0. The
resonance widths are all reduced by an order of magnitude.
Now there is no possibility of overlap between any of these
resonances.



and close to a sixth order resonance νx = 0.175, νy =
0.169. The maximum relative swing of the distributionwas
recorded for each simulation.

Figures 13 to 15 show the dependence of the swing on the
bunch length. At the Tevatron tunes, the maximum swing is
close to the value it would be without the beam-beam inter-
action indicating that the resonances do not have a signif-
icant effect. As a function of bunch length, the maximum
swing oscillates with decreasing amplitudes. Close to the
lower order resonances the swings are much larger as ex-
pected and they also oscillate with the bunch length. The
results of these simulations at three different tunes are in
qualitative agreement with the analytical predictions.

The best test of these predictions would be an experimen-
tal measurement. This would require that the bunch length
be varied over a range and an observable such as the life-
time be measured at each bunchlength of the strong beam.
It would be sufficient to have only a single bunch in each
beam. At the Tevatron, it is not possible to shorten the
bunch length much below its value of around 36cm. The
bunch can be lengthened either by an injection mismatch or
with the addition of RF noise. In order to have a clear signa-
ture that the observed effects are due to the change in bunch-
length, it will be desirable to have other parameters such as
bunch intensity, emittance, tunes etc. constant. With care-
ful preparation, it should be possible to carry out such a test.

4 PROPOSED EXPERIMENTS

In RunII the performance limitations may well arise due
to the several long-range interactions. This is also true for
the LHC where there will be about 60 long-range interac-
tions and almost all at the same phase. In addition, the LHC
will be the first hadron collider where both beams will be of
the same intensity so strong-strong effects (about which not
much is known) might also be important. There are a num-
ber of experiments that would address questions relevant to
the weak-strong regime (appropriate to the Tevatron) and
the strong-strong regime. I will focus here on weak-strong
experiments.

• Impact of synchro-betatron resonances.

It would be useful to measure their impact without the
complications of the long-range interactions. The only
published observations with crossing angles at hadron
colliders were at the SPS [6]. There experiments with
two colliding bunches found no significant differences
in background losses up to crossing angles of 600µrad.
Compared to the Tevatron however, the Piwinski pa-
rameter χ was substantially smaller (χmax = 0.7) due
to the shorter bunch lengths. At the Tevatron the ex-
periments can be done with one anti-proton bunch and
two proton bunches so the anti-protons collide with
a bunch at B0 and D0. At the least one would mea-
sure the lifetime, and background losses at different
crossing angles. Orbit effects due to the crossing an-
gles will need to be eliminated, thus it would be use-

1

1.02

1.04

1.06

1.08

1.1

1.12

0 10 20 30 40 50 60 70 80

M
ax

im
um

 r
el

at
iv

e 
sw

in
g 

in
 a

m
pl

itu
de

Bunch length (cm)

 
 

as = 1
Gaussian as

Figure 13: Maximum relative swing amongst 1000 parti-
cles tracked for 100,000 turns at each bunchlength with the
Tevatron tunes ν=0.581, νy = 0.575. Bunch length effects
such as phase advance over the bunch and the longitudi-
nal Gaussian density ditributionof the disks are included in
these simulations.
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Figure 14: Same as above but close to fourth integer reso-
nances, νx = 0.257, νy = 0.251.
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Figure 15: Same as above but close to sixth integer reso-
nances, νx = 0.175, νy = 0.169.



ful to first measure the single beam lifetime without
and with crossing angles. Limitations due to physical
aperture can be determined this way. The lifetime with
colliding beams may depend on the relative signs of
the crossing angles at the two IPs. Of all the possible
combinations of signs, some may be ruled out because
they would not separate the beams by the required dis-
tances when there are 100 or more bunches in each
beam. It would be useful to determine the lifetime for
each of the useful sign combinations. These measure-
ments may reveal that there is a crossing angle beyond
which the effects due to the nonlinear fields of the IR
quadrupoles and the synchro-betatron resonances lead
to unacceptably large losses. This can be compared
with the results of simulations and would determine if
the important physics is contained in the models.

• Impact of long-range interactions.

Tune footprints are severely distorted when the
long-range interactions are included and the foot-
print changes from bunch to bunch. Preliminary
tracking results with 36×36 bunches indicate that
these interactions reduce the dynamic aperture by a
significant amount. The interactions closest to the
IP on either side are at the smallest separations and
have the largest effect. As a first experimental test it
would be desirable to have a few bunches (say four) in
the proton beam and spaced so that each anti-proton
bunch experiences only the nearest neighbour interac-
tions in each IR but not the head-on interactions. The
lifetime could be measured as a function of the proton
intensity and also as a function of the beam separation
at these nearest neighbour points. The dependence on
separation will be a useful input towards determining
the minimum crossing angle while the dependence on
intensity may be useful in determining the maximum
useful luminosity. This set of experiments will be very
useful in testing the predictive power of the simula-
tions with long-range interactions. If the observations
are close to the simulation results, then simulations
may be used with more confidence in predicting the
outcome with 100 or more bunches in each beam.
With the bunch spacing at 396 nanoseconds, perhaps
the most useful experiment to determine the feasi-
bility of shortening the spacing to 132 nanoseconds
would be to collide an anti-proton bunch with 36
proton bunches with crossing angles at B0 and D0.
This can be accomplished with the present set of
separators. In this experiment the impact of both
the synchro-betatron resonances and the long-range
interactions will be felt. Observations over a range
of crossing angles will go a long way towards our
understanding of these phenomena.

• Tune footprint due to the beam-beam interactions.

Measurement of the footprint is the most basic test of
the nonlinearity of the beam-beam force and the ma-

chine lattice. A comparison with the theoretical foot-
print will reveal if all important effects have been in-
cluded in the theoretical model. The tune as a func-
tion of amplitude could be measured with a pencil anti-
proton bunch which can be kicked to different ampli-
tudes in both transverse planes. If this pencil bunch
is sufficiently narrow, it will probe the force within a
small region of phase space where the tune is nearly
constant. Following the kick this probe bunch will de-
cohere due to the nonlinear beam-beam force and its
emittance will grow as it fills out phase space by shear-
ing. Figure 16 shows an example of the decoherence
of the beam centroid following an initial kick which
placed it at a distance of about 5σ from the center of
the opposing bunch. Some of the issues which must
be addressed in such an experiment include:
- The time to measure the tune should be less than the
decoherence time.
- The decoherence time will depend on the kick ampli-
tude and the machine chromaticity.
- The minimum size of the pencil bunch may depend
on the minimum intensity required to trigger the beam
position monitors if turn by turn data is used to mea-
sure the tunes.
- If scraping is used to reduce the beam size, then it
might be useful to scrape in regions of high dispersion
to remove some of the momentum spread. It may also
take some time to learn how to scrape efficiently with-
out losing the beam.

If the bunch decoheres significantly following a tune
measurement at a particular amplitude, it may be un-
usable for a subsequent measurement. In that case we
may want a train of pencil bunches, each of which will
be kicked to a different amplitude, to obtain the tune
footprint. An alternative possibility could be to use
an AC dipole, as suggested for other measurements
at RHIC, to kick the beam adiabatically and thereby
avoid the emittance growth. If this works in practice,
then each pencil bunch could be used to measure the
tune at more than one amplitude.

5 CONCLUSIONS

The beam-beam interactions will have a major impact on
beam stability in Run II. Crossing angles at the main inter-
action points and the nearly two hundred long-range inter-
actions will be new sources of lifetime limitations. This will
be further complicated by the fact that the effects will vary
from bunch to bunch. Detailed theoretical and experimental
studies are required to know whether this mode of operation
will be feasible.

The working point of the Tevatron has been chosen so
that the tune footprint does not cross resonances of order
less than twelve. When crossing angles are introduced, the
footprint shrinks in size. Some twelfth order betatron reso-
nances now do not cross the beam distributionand new res-
onances are excited. In addition synchrotron sideband res-
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Figure 16: Decoherence of the beam centroid due to the
nonlinear beam-beam force between two beams that are ini-
tially offset from each other by about 5σ.

onances develop around the betatron resonances and these
are a source of concern.

The simulations reported here have studied the effects
of the crossing angles but not those of the long-range in-
teractions. These show that that the synchro-betatron res-
onances induced by the crossing angles do not appear to af-
fect the core of the beam up to crossing angles of 400µ ra-
dians. The amplitude growth found at crossing angles be-
tween 200µrad to 400µrad are statistically about the same.
These simulations also show that tune modulation at typi-
cal modulation depths causes large amplitude growth and
dominates the effects due to the crossinng angles. Analyti-
cal and simulation studies have shown that the long length
of the bunches in the Tevatron have a major impact on the
strength of the beam-beam resonances. The analytical stud-
ies predict that the resonance strengths oscillate as a func-
tion of the bunch length. This has been confirmed with
simulations. Resonance widths calculated for the Tevatron
bunches are about an order of magnitude smaller than those
calculated for zero length bunches. These results suggest
that it would be very worthwhile to conduct a beam-beam
experiment where the bunch length is varied to the extent
possible. At longer bunch lengths there is a loss of lumi-
nosity due to the hour-glass effect but it may turn out that
the gain in lifetime is sufficiently high that the integrated lu-
minosity is larger. In any event, the phase averaging effect
due to the long bunch is significant and needs to be taken
into account in all theoretical models.

The amplitude growth within the beam distribution may
change qualitatively when the long-range interactions are
included. The footprint changes and the changes are dif-
ferent from bunch to bunch. The transverse core of some
bunches may be excited by resonances. This is now under
study.

In the near term, experimental observations with crossing
angles appear feasible during the machine studies period at
the Tevatron in the fall of 2000. The first stage of Run II
will operate with 36 bunches in each beam. This will give
us an opportunity to observe the effects of the several long-

range interactions. When the faster kickers are available,
operation with the shorter bunch spacing of 132 nanosec-
onds will be tested. It will also be desirable to conduct ba-
sic tests of beam-beam models by measuring the tune foot-
print and perhaps further out, measure the dynamic aper-
ture with beam-beam interactions. These experiments can
just as well be conducted at other colliders, especially RHIC
when the AC dipoles are available.
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